July 30, 2023

tMapRStreamsOutput – Docs for ESB 7.x

tMapRStreamsOutput

Publishes messages into a MapR Streams system. Only MapR V5.2 onwards is supported
by this component.

This component receives messages serialized into byte arrays by its preceding component and issues these messages into a given MapR Streams system.

Depending on the Talend
product you are using, this component can be used in one, some or all of the following
Job frameworks:

tMapRStreamsOutput Standard properties

These properties are used to configure tMapRStreamsOutput running in the Standard Job framework.

The Standard
tMapRStreamsOutput component belongs to the Internet family.

The component in this framework is available in all Talend products with Big Data
and in Talend Data Fabric.

Basic settings

Schema and Edit
schema

A schema is a row description. It defines the number of fields
(columns) to be processed and passed on to the next component. When you create a Spark
Job, avoid the reserved word line when naming the
fields.

Note that the schema of this component is read-only. It stores the
messages to be published.

Use an existing connection

Select this check box and from the list displayed select the
relevant connection component to reuse the connection details you have already defined.

Distribution and
Version

Select the MapR distribution to be used. Only MapR V5.2 onwards is supported
by the MapRDB components.

If the distribution you need to use with your MapRDB database is not
officially supported by this MapRBD component, that is to say, this distribution is MapR
but is not listed in the Version drop-down list of
this components or this distribution is not MapR at all, select Custom.

  1. Select Import from existing
    version
    to import an officially supported distribution as base
    and then add other required jar files which the base distribution does not
    provide.

  2. Select Import from zip to
    import the configuration zip for the custom distribution to be used. This zip
    file should contain the libraries of the different Hadoop elements and the index
    file of these libraries.

    In
    Talend

    Exchange, members of
    Talend
    community have shared some ready-for-use configuration zip files
    which you can download from this Hadoop configuration
    list and directly use them in your connection accordingly. However, because of
    the ongoing evolution of the different Hadoop-related projects, you might not be
    able to find the configuration zip corresponding to your distribution from this
    list; then it is recommended to use the Import from
    existing version
    option to take an existing distribution as base
    to add the jars required by your distribution.

    Note that custom versions are not officially supported by

    Talend
    .
    Talend
    and its community provide you with the opportunity to connect to
    custom versions from the Studio but cannot guarantee that the configuration of
    whichever version you choose will be easy, due to the wide range of different
    Hadoop distributions and versions that are available. As such, you should only
    attempt to set up such a connection if you have sufficient Hadoop experience to
    handle any issues on your own.

    Note:

    In this dialog box, the active check box must be kept
    selected so as to import the jar files pertinent to the connection to be
    created between the custom distribution and this component.

    For a step-by-step example about how to connect to a custom
    distribution and share this connection, see Hortonworks.

Topic name

Enter the name of the topic you want to publish messages to. This topic must already
exist. You must enter the name of the stream to which this topic belongs. The syntax is
path_to_the_stream:topic_name.

Compress the data

Select the Compress the data check box to compress the
output data.

Advanced settings

Producer properties

Add the MapR Streams producer properties you need to customize to this table.

For further information about the producer configuration you can define in this table, see
the section describing the important producer configuration properties for MapR Streams in
MapR documentation at MapR Streams Overview.

tStatCatcher Statistics

Select this check box to gather the processing metadata at the Job
level as well as at each component level.

Global Variables

Global Variables

ERROR_MESSAGE: the error message generated by the
component when an error occurs. This is an After variable and it returns a string. This
variable functions only if the Die on error check box is
cleared, if the component has this check box.

A Flow variable functions during the execution of a component while an After variable
functions after the execution of the component.

To fill up a field or expression with a variable, press Ctrl +
Space
to access the variable list and choose the variable to use from it.

For further information about variables, see
Talend Studio

User Guide.

Usage

Usage rule

This component is an end component. It requires a tJavaRow or tJava component to transform the incoming data into
serialized byte arrays.

The following sample shows how to construct a statement to perform
this transformation:

In this code, the output_row
variable represents the schema of the data to be output to tMapRStreamsOutput and output_row.serializedValue the single read-only column of
that schema; the input_row variable
represents the schema of the incoming data and input_row.users the input column called users to be transformed to byte arrays by the
getBytes() method.

Prerequisites

The Hadoop distribution must be properly installed, so as to guarantee the interaction
with
Talend Studio
. The following list presents MapR related information for
example.

  • Ensure that you have installed the MapR client in the machine where the Studio is,
    and added the MapR client library to the PATH variable of that machine. According
    to MapR’s documentation, the library or libraries of a MapR client corresponding to
    each OS version can be found under MAPR_INSTALL
    hadoophadoop-VERSIONlib
    ative
    . For example, the library for
    Windows is lib
    ativeMapRClient.dll
    in the MapR
    client jar file. For further information, see the following link from MapR: http://www.mapr.com/blog/basic-notes-on-configuring-eclipse-as-a-hadoop-development-environment-for-mapr.

    Without adding the specified library or libraries, you may encounter the following
    error: no MapRClient in java.library.path.

  • Set the -Djava.library.path argument, for example, in the Job Run VM arguments area
    of the Run/Debug view in the Preferences dialog box in the Window menu. This argument provides to the Studio the path to the
    native library of that MapR client. This allows the subscription-based users to make
    full use of the Data viewer to view locally in the
    Studio the data stored in MapR.

For further information about how to install a Hadoop distribution, see the manuals
corresponding to the Hadoop distribution you are using.

Related scenarios

No scenario is available for the Standard version of this component yet.

tMapRStreamsOutput properties for Apache Spark Streaming

These properties are used to configure tMapRStreamsOutput running in the Spark Streaming Job framework.

The Spark Streaming
tMapRStreamsOutput component belongs to the Messaging family.

This component is available in Talend Real Time Big Data Platform and Talend Data Fabric.

Basic settings

Schema and Edit
schema

A schema is a row description. It defines the number of fields
(columns) to be processed and passed on to the next component. When you create a Spark
Job, avoid the reserved word line when naming the
fields.

Note that the schema of this component is read-only. It stores the
messages to be published.

Topic name

Enter the name of the topic you want to publish messages to. This topic must already
exist. You must enter the name of the stream to which this topic belongs. The syntax is
path_to_the_stream:topic_name.

Compress the data

Select the Compress the data check box to compress the
output data.

Advanced settings

Producer properties

Add the MapR Streams producer properties you need to customize to this table.

For further information about the producer configuration you can define in this table, see
the section describing the important producer configuration properties for MapR Streams in
MapR documentation at MapR Streams Overview.

Connection pool

In this area, you configure, for each Spark executor, the connection pool used to control
the number of connections that stay open simultaneously. The default values given to the
following connection pool parameters are good enough for most use cases.

  • Max total number of connections: enter the maximum number
    of connections (idle or active) that are allowed to stay open simultaneously.

    The default number is 8. If you enter -1, you allow unlimited number of open connections at the same
    time.

  • Max waiting time (ms): enter the maximum amount of time
    at the end of which the response to a demand for using a connection should be returned by
    the connection pool. By default, it is -1, that is to say, infinite.

  • Min number of idle connections: enter the minimum number
    of idle connections (connections not used) maintained in the connection pool.

  • Max number of idle connections: enter the maximum number
    of idle connections (connections not used) maintained in the connection pool.

Evict connections

Select this check box to define criteria to destroy connections in the connection pool. The
following fields are displayed once you have selected it.

  • Time between two eviction runs: enter the time interval
    (in milliseconds) at the end of which the component checks the status of the connections and
    destroys the idle ones.

  • Min idle time for a connection to be eligible to
    eviction
    : enter the time interval (in milliseconds) at the end of which the idle
    connections are destroyed.

  • Soft min idle time for a connection to be eligible to
    eviction
    : this parameter works the same way as Min idle
    time for a connection to be eligible to eviction
    but it keeps the minimum number
    of idle connections, the number you define in the Min number of idle
    connections
    field.

Usage

Usage rule

This component is used as an end component and requires an input link.

This component needs a Write component such as tWriteJSONField to define a serializedValue column in the input schema to send serialized data.

Spark Connection

In the Spark
Configuration
tab in the Run
view, define the connection to a given Spark cluster for the whole Job. In
addition, since the Job expects its dependent jar files for execution, you must
specify the directory in the file system to which these jar files are
transferred so that Spark can access these files:

  • Yarn mode (Yarn client or Yarn cluster):

    • When using Google Dataproc, specify a bucket in the
      Google Storage staging bucket
      field in the Spark configuration
      tab.

    • When using HDInsight, specify the blob to be used for Job
      deployment in the Windows Azure Storage
      configuration
      area in the Spark
      configuration
      tab.

    • When using Altus, specify the S3 bucket or the Azure
      Data Lake Storage for Job deployment in the Spark
      configuration
      tab.
    • When using Qubole, add a
      tS3Configuration to your Job to write
      your actual business data in the S3 system with Qubole. Without
      tS3Configuration, this business data is
      written in the Qubole HDFS system and destroyed once you shut
      down your cluster.
    • When using on-premise
      distributions, use the configuration component corresponding
      to the file system your cluster is using. Typically, this
      system is HDFS and so use tHDFSConfiguration.

  • Standalone mode: use the
    configuration component corresponding to the file system your cluster is
    using, such as tHDFSConfiguration or
    tS3Configuration.

    If you are using Databricks without any configuration component present
    in your Job, your business data is written directly in DBFS (Databricks
    Filesystem).

This connection is effective on a per-Job basis.

Prerequisites

The Hadoop distribution must be properly installed, so as to guarantee the interaction
with
Talend Studio
. The following list presents MapR related information for
example.

  • Ensure that you have installed the MapR client in the machine where the Studio is,
    and added the MapR client library to the PATH variable of that machine. According
    to MapR’s documentation, the library or libraries of a MapR client corresponding to
    each OS version can be found under MAPR_INSTALL
    hadoophadoop-VERSIONlib
    ative
    . For example, the library for
    Windows is lib
    ativeMapRClient.dll
    in the MapR
    client jar file. For further information, see the following link from MapR: http://www.mapr.com/blog/basic-notes-on-configuring-eclipse-as-a-hadoop-development-environment-for-mapr.

    Without adding the specified library or libraries, you may encounter the following
    error: no MapRClient in java.library.path.

  • Set the -Djava.library.path argument, for example, in the Job Run VM arguments area
    of the Run/Debug view in the Preferences dialog box in the Window menu. This argument provides to the Studio the path to the
    native library of that MapR client. This allows the subscription-based users to make
    full use of the Data viewer to view locally in the
    Studio the data stored in MapR.

For further information about how to install a Hadoop distribution, see the manuals
corresponding to the Hadoop distribution you are using.

Related scenarios

No scenario is available for the Spark Streaming version of this component
yet.


Document get from Talend https://help.talend.com
Thank you for watching.
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x